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Wavelet Based Estimation of
Local Kolmogorov Turbulence

George C. Papanicolaou
Knut Sølna

ABSTRACT We present a new approach for analyzing locally stationary processes with
power law spectral densities. We divide the data into segments over which the process is
essentially stationary and then use the wavelet scale spectrum to estimate the parameters
of the power law, which are the scale factor and the exponent. These parameters vary
from segment to segment, with part of the variation due to the nonstationarity of the
data and part due to estimation errors that depend on the length of the segments. In the
approach we introduce here, segmentation effects due to estimation errors are removed
by filtering. We also estimate an effective local inertial range, that is, the set of scales over
which the process can be modeled by a power law. We apply our estimation method to
atmospheric temperature data that are expected to have Kolmogorov power law spectra.
We find that there are significant fluctuations about the Kolmogorov law and analyze
them in detail.

1 Introduction

Stochastic processes that are approximately stationary and have approximately
power law spectral densities arise frequently in modeling atmospheric turbulence,
financial data, geophysical data, etc. How can we estimate the variable power law
behavior of the spectral densities from data? The analysis will depend on how we
segment the data and on how we choose the range of scales, or frequencies, over
which we look for a power law fit. In this paper we address these issues using
fractional Brownian motion as the underlying stochastic model whose parameters
are estimated locally by wavelet scale spectra. We then apply the theory to atmo-
spheric turbulence data. This data was first analyzed in Washburn et al. [38] and
subsequently in [22, 28, 33]. We provide here a general framework for estimat-
ing local power law processes with wavelets and a large part of the mathematical
background needed for its justification. The motivation for the measurements and
the analysis presented here is the propagation of a laser beam in the turbulent
atmosphere. The beam will be affected by high frequency medium fluctuations
that is caused by strong turbulence. The standard model used for such medium
fluctuations is Fractional Brownian motion Washburn et al. [38]. We will model
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the medium in terms of local Fractional Brownian motion.
In Section 2 we introduce Fractional Brownian motion as a model for turbu-

lence and discuss the wavelet based scale spectrum that can be used for spectral
estimation of such processes.

In Section 3 we introduce the atmospheric data, and carry out a preliminary
scale spectral analysis using the Haar-wavelet basis. This analysis suggests that
nonstationary effects are indeed important for this data set. The range of scales
over which the spectrum can be modeled as a power law, the inertial range, as it
is called in turbulence theory, varies with spatial location and, in addition, the
estimated power law parameters depend on location.

In Section 4 we discuss the method we use to estimate the power law parame-
ters. First, in Section 4.2 we address the issue of choosing the range over which
to fit the power law by regression. We do this by using the fractional Brownian
motion as a model locally. Since the process is only locally stationary, power
law parameters must be estimated based on relatively short spatial segments. In
Section 4.3 we show how to remove the variability of the estimated power law
parameters that is due to the finiteness of the segments. The filtering that we do
here is used frequently in geostatistics [9, 31].

In Section 5 we return to the atmospheric data set and use the framework
introduced in Section 4 for estimation of its spectrum. We segment the data into
intervals over which they are approximately stationary. We must have a rough
estimate of the size of the intervals of stationarity, which for the aerothermal
data set we get from a variogram analysis of the wavelet coefficients. Another
case where the intervals of stationarity are known approximately is analyzed in
[2] using the local Fourier transform. We also show some simulations from the
estimated model that assess the overall relevance of our analysis.

The main point of our analysis is that we are able to identify the local variations
of the power law parameters, the Kolmogorov turbulence law, which arise from
large scale atmospheric phenomena. The analysis should be applicable to other
data sets, financial data for example, where departure from stationarity needs to
be quantified.

Note that in order to deal with approximate stationarity and approximate
power law spectra we need a good understanding of the estimation issues for
stationary, power law processes, like fractional Brownian motion. Previous work
on the statistics of wavelet scale spectra of fractional Brownian motion can be
found in [1, 13, 29, 36, 37, 39]. We provide in Section 6 a brief but complete
analysis of these statistics that is based on a general formula for the covariance
of the Haar wavelet coefficients (equation (6.2)). A central limit theorem for the
estimators of the power law parameters also follows readily from the covariance
formula, we show this in Section 7. When Fourier spectra are used the statistical
analysis of global power law processes is given in [32] and an analysis of estimators
for the exponent of the power law is given in [17, 21]. Taqqu and Teverovsky [35]
present an empirical study that compares estimators for long-range dependence.
We use wavelet scale spectra because they provide a time-scale decomposition of
the data that is well suited to power law processes, whether they are stationary
(have stationary increments) or not. A comparison of power law estimation based
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on wavelet scale spectra and on Fourier spectra, in the stationary case, is given in
Abry el al. [1] and a common framework for estimation of long-range dependence
discussed in [5].

2 Scale spectrum of Fractional Brownian motion

2.1 Fractional Brownian motion

We shall model ‘pure’ power law processes by fractional Brownian motion (fBm),
{BH(x);x ≥ 0}, introduced by Mandelbrot and Van-Ness [24]. It is a Gaussian
process with mean zero, stationary increments and covariance

E[BH(x)BH(y)] =
σ2

2
(|x|2H + |y|2H − |x− y|2H) (2.1)

with 0 ≤ H ≤ 1 and σ parameters. Its structure function is

E[(BH(x)−BH(x−∆x))2] = σ2|∆x|2H ,

and it is conditioned to be zero at the origin: BH(0) = 0. The so called Hurst ex-
ponent H determines the correlation of the increments. The covariance of future
increments with past ones is

ρH(∆x) = E[(BH(x)−BH(x−∆x))

×(BH(x+ ∆x)−BH(x))] = σ2(22H−1 − 1)|∆x|2H ,

which is independent of x. When H > 1/2 this quantity is positive so if the past
increment is positive, then on average the future increment will be positive. Feder
[11] calls this persistence. When H < 1/2 we have an antipersistent process with
a positive increment in the past making a positive increment in the future less
likely. Ordinary Brownian motion corresponds to H = 1/2. In this case future
and past increments are independent. Of special interest here is H = 1/3 which
corresponds to the Kolmogorov scaling law [25].

Fractional Brownian motion has stationary increments but is not itself sta-
tionary. However, as shown in [1] for example, it is possible to assign a pseudo-
spectrum to it by cutting off the low frequencies. Let

X = BH ∗ ψ

with star denoting convolution and ψ a function that integrates to zero so that
its Fourier transform Ψ vanishes at zero frequency. The process X is stationary
and its power spectrum is

PX ∝ σ2|f |−(2H+1)|Ψ(f)|2.

Since we usually observe power law processes through a filter that cuts off very
low frequencies, we can associate with BH the power law spectrum

P̃BH
∝ σ2|f |−(2H+1) .
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In the Kolmogorov case H = 1/3 the spectrum is σ2|f |−5/3 over some range of
frequencies, called the inertial range. Fractional Brownian motion is self-similar
since BH(x) and aHBH(x/a) have the same finite dimensional distributions for
all a.

In Section 6 we discuss in detail estimation of fBm, or a pure power law process.
In Section 4 below we generalize the estimation procedure to locally stationary
power law processes and apply the scheme to the atmospheric data in Section 5.

2.2 Haar wavelets and scale spectrum

We want to carry out a spectral analysis of the process, given as a finite set of
data, and to fit the estimated spectrum to a power law. For this purpose scale
spectra, rather than Fourier spectra, will be used. Scale spectra are a natural
and flexible tool for self-similar processes [1, 20]. The scale spectrum is defined
in terms of the coefficients of the data in a wavelet basis. We will use the Haar
wavelet basis although other bases could have been used as well [15]. In the
application to the aerothermal data H ≈ 1/3 but varying and this makes the
Haar wavelets with relatively narrow support a natural choice. Haar wavelet
based estimators are sometimes related to classical ones, as is in particular the
Allan variance estimator for the slope of the log of the spectral density [30].

Let Y denote the process for which we want to compute the Haar wavelet
coefficients. Denote the approximation coefficients at level zero by

X = (a0(1), a0(2), ..., a0(2
M )).

These are defined by

a0(n) =

∫ n

n−1
Y (x)dx .

Given this level zero representation, the data, we construct successively its wavelet
coefficients with respect to the Haar basis as follows. Let

a1(n) =
1√
2

(a0(2n) + a0(2n− 1)) (2.2)

d1(n) =
1√
2

(a0(2n)− a0(2n− 1)) , for n = 1, 2..., 2M−1

be the smoothed signal and its fluctuation, or detail, at the finest scale. Note
that the detail vector d1 contains every other successive difference of the data.
This process of averaging and differencing can be continued by defining

a2(n) =
1√
2

(a1(2n) + a1(2n− 1))

d2(n) =
1√
2

(a1(2n)− a1(2n− 1)) , for n = 1, 2..., 2M−2

and in general

aj(n) =
1√
2

(aj−1(2n) + aj−1(2n− 1))

dj(n) =
1√
2

(aj−1(2n)− aj−1(2n− 1)) , for n = 1, 2..., 2M−j
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for j = 1, ...,M . The data vector X can then be reconstructed from
aM , dM , dM−1, ..., d1 since from equations (2.2) we have

a0(2n) =
1√
2

(a1(n) + d1(n))

a0(2n− 1) =
1√
2

(a1(n)− d1(n)) , for n = 1, 2..., 2M−1

and now a1 can be replaced by sums and differences of a2 and d2, etc.
The detail coefficients at level j can alternatively be expressed as

dj(n) =
1√
2j

∫ ∞
−∞

ψ(x/2j − n)Y (x)dx

with the mother wavelet defined by

ψ(x) =


−1 if − 1 ≤ x < −1/2
1 if − 1/2 ≤ x < 0
0 otherwise

.

The difference coefficients correspond to probing the process at different scales
and locations, with n representing location and j scale. From the self-similarity
of fractional Brownian motion it follows that for such a process E[dj(n)2] ∝
2j(2H+1).

The scale spectrum of X relative to the Haar wavelet basis is the sequence Sj
defined by

Sj =
1

2M−j

2M−j∑
n=1

(dj(n))2 , j = 1, 2, ...,M. (2.3)

For fractional Brownian motion the log of the scale spectrum is approximately
linear in the scale j. As discussed in detail in Section 6 this can be used to
estimate the parameters of the process by regression. It is easily verified from the
definitions above that the l2 norm of the data vector X can be written as

2M∑
n=1

(a0(n))2 = (aM )2 +

M∑
j=1

2M−jSj ,

which is a way of expressing the orthogonality of the decomposition of X into
aM and the dj , j = 1, ...,M .

The scale spectral point Sj is the mean square of the detail coefficients at
scale j. The spectrum can therefore be interpreted as the energy of the signal in
the different scales relative to the Haar wavelet basis. Consider data containing
information only at the finest scale: X = {1, − 1, 1, − 1, · · · }. Then only the
d1(n) coefficients are non-zero. Hence, Sj roughly corresponds to the energy at
2(j−1) times the finest scale.

Note that the spatial support of the integrals defining the wavelet coefficients
at a certain scale is adapted to the particular scale. The short-scale difference
coefficients, that provide high frequency information, are defined in terms of
consecutive integrals of narrow support. A plot of these difference coefficients
reveals information about how the high frequency content of the data changes
with location.
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3 The aerothermal data

3.1 Temperature and index of refraction fluctuations

Our objective is to estimate the spectrum of temperature data taken from the
upper atmosphere. One motivation for our modeling and estimation is to be
able to generate synthetic random media for the simulation of wave propagation,
propagation of a laser beam, in a turbulent atmosphere. Before we analyze the
aerothermal data we explain briefly how velocity, temperature and index of re-
fraction fluctuations are related to each other and how the Kolmogorov scaling
theory enters in their description [25, 34].

The Kolomogorov theory is a phenomenological statistical description of the
velocity field in the atmosphere. Based on a scaling argument, the mean-square
velocity differences are described in a universal manner over a rather broad range
of spatial scales, the inertial range. If we assume homogeneity, isotropy and in-
compressibility the result is that the structure function of the velocity has the
form

E[(vx(x0 + x)− vx(x0))2] = C2
v|x|2/3. (3.1)

Here vx is the velocity in the direction of the displacement x. The parameter
C2
v is the velocity structure constant, a measure of the amount of energy in the

inertial range, which is typically confined between an inner scale l0 and an outer
scale L0.

The connection to temperature is through the theory of convection-diffusion
of a passive scalar. It turns out [25] that temperature fluctuations have also a
structure function with Kolmogorov 2/3 scaling.

At optical frequencies the variations in the index of refraction δn are approxi-
mately

δn = −79P
δT

T 2
× 10−6

with P atmospheric pressure in millibars and T temperature in degrees Kelvin.
Thus, in order to describe the spectrum of fluctuations in the refractive index
we need only the spectrum of the fluctuations in the temperature. Wavelet scale
spectra are used to analyze turbulence data in [19].

The above model for refractive index fluctuations is used extensively to model
atmospheric wave propagation. Variations in the turbulent character of the medium
are typically modeled through variations in C2

v only and not in the exponent,
which is fixed at 2/3.

3.2 Data analysis of aerothermal data

We will analyze temperature data obtained by the Air Force high-altitude laser
propagation and turbulence data collection effort. For a detailed discussion of
recording procedures and analysis see [28, 33, 38]. A strong effort was made
to provide high quality data that could be used to characterize the turbulent
atmosphere. The above references provide together a fairly detailed account for
this unique data set.
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We take the temperature data as our starting point and examine what anal-
ysis reveals about their structure. We are interested in particular in accounting
properly for nonstationary effects. All calculations are carried out in MATLAB
on a Silicon Graphics workstation.

FIGURE 1. The raw temperature data. The spatial resolution of the data is approxi-
mately 2cm.

In Figure 1 we show the temperature data, which has approximately 4.2 ×
106 points. The spatial resolution is approximately 2cm. The data set has been
recorded by a probe mounted on an aircraft and is, of course, quite noisy and it
is part of our task to remove spurious noise effects in the estimation process.

In Figure 2 we show a scale-space plot of the square of the Haar wavelet coef-
ficients, corresponding to a plot of signal energy at different scales and locations.
For short-scales or high frequencies a square wave that can be attributed to noise
from the aircraft is clearly visible. For the long scales this component has been
effectively suppressed by the lowpass filtering.

For fractional Brownian motion the wavelet coefficients will be normally dis-
tributed. In Figure 3 we show a histogram of the wavelet coefficients at scale 8,
normalized by a local estimate of the variance. The dashed line corresponds to
a Gaussian distribution. In the bottom plot we show the empirical variogram of
these wavelet coefficients, normalized by their variance. The variogram is defined
in (5.2) below. The dashed line is the theoretical variogram for fBm with Kol-
mogorov scaling, H = 1/3. In Figure 4 we show an estimate of the variogram
function for log(dj(n)2); 7 ≤ j ≤ 9. If the process had a pure power law spec-
trum over these scales we would see only a very small correlation. However, these
quantities are correlated on the order of km, indicating that the data corresponds
to a local power law.

Our main objective is now to examine whether the data can be modeled well
by a ‘power law’ model over a subrange of scales. Recall that for such a process,
the scale spectrum Sj is linear in a log-log plot, when the record is very long.

In Figure 5 we show log-log plots of scale spectra over nonoverlapping segments
of the data, with each segment having length 655m. The top plot corresponds
to the first half of the data whereas the bottom plot corresponds to the second
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FIGURE 2. The square Haar wavelet coefficients for different scales and locations which
corresponds to a scale-space energy distribution. Measurement noise gives rise to the
square wave that is seen for the shortest scales.

half. Each plot contains scale spectral points over 15 scales, 1 ≤ j ≤ 15. This
corresponds to length scales from l1 = .04m to l15 = 655m. We take as abscissa
the spatial frequency Kj

Kj =
π

∆x
21−j [rad/m] = 100π2−j [rad/m]. (3.2)

Note that the scale spectra show a distinct departure from power law behavior
for scales below one meter (K = 6). For larger scales, power law behavior may
be considered in the range between 2.5m to 80m (.08 ≤ K ≤ 2.5) approximately,
which corresponds to the detail coefficients d7 to d12. The departure from power
law behavior for the shortest scales is partly due to the influence of measurement
noise. The first half of the data is less energetic than the second half and has a
higher signal to noise ratio. That the second half of the data is more energetic is
also clearly seen in Figure 6. Here we segment the data into segments of length
655m and plot the mean square of the d8 wavelets in each segment. It is the
more energetic, strong turbulence, section that will affect propagation of a laser
beam in the atmosphere. In the top plot of Figure 7 we show the data in this
section. The laser beam will interact essentially only with the high frequency
fluctuations in the medium. In Figure 7, bottom plot, we show the high-pass
filtered temperature data, that is, the data restricted to scales 1 to 14 in a
Daubechies (db15) wavelet basis. The high-pass filtering with a smooth wavelet
mitigates the effects of the low order polynomial trens in the measured data
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FIGURE 3. The top plot shows the empirical distribution of d8. The solid line is a
Gaussian distribution. The bottom plot shows the variogram of these wavelet coefficients.
The dashed line is the theoretical variogram for fBm with H = 1/3.

that is seen in the top plot. A main motivation for our study is to estimate the
turbulence parameter fluctuations that are important for laser beam propagation
and we will focus on the strong turbulence section in between 50km and 85km
in the estimation. Thus, we take the data in the bottom plot of Figure 7 as the
starting point for our estimation of the turbulence parameters.

The parameter estimates, the estimated intercept and slope for the log scale
spectra will depend on the particular segment of data used. We want to identify
the part of this variability that is due to the nonstationarity of the process and
minimize variability due to estimation errors. Before we continue with the scale
spectral analysis we note the following.

• Noise bursts in the data enter only in some of the detail coefficients, as
can be seen from Figure 2. The criterion for selecting of the inertial range,
implemented in the next section, will automatically restrict the scale range.

• The temperature data are not a stationary time series and they do not
have stationary increments. Computing scale spectra over long segments,
in which the process cannot be taken as stationary, gives a quantity that
is hard to interpret. Even though the average slope of the log scale spectra
over several segments is close to −5/3, as the theory of turbulence predicts,
there is a lot of variability. A local power law model of the kind discussed
in Section 4 is likely to fit the data better than the idealized power law
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FIGURE 4. The figure shows the variogram of log(dj(n)2) as function of spatial lag and
with 7 ≤ j ≤ 9. The magnitude of these quantities determine the scale spectrum and
they decorrelate over a scale on the order of km. The dotted, dashed and solid lines
corresponds respectively to scales 7,8 and 9.

model, with stationary increments.

We will estimate the scale spectrum of the data when we model it as a local
power law, using the method described in Section 4. To start the estimation we
must have rough estimates for the intervals of stationarity and for the exponent
of the power law. In view of Figures 3, 4 and 5 we choose these estimates to be

• (ε̂)−1 = 2km

• H0 = 1/3 (Kolmogorov scaling) .

In the next section we develop a framework for estimation of local power law
processes with varying inertial range and power law parameters. In Sections 5.1
and 5.2 we carry out the estimation. First we estimate the inertial range and
then the power law parameters.

4 Estimation of local power law processes

4.1 Modeling and segmentation

The fractional Brownian motion described in Section 2 is an idealization of a
process with power law spectrum. It has stationary increments and if the power
law is truncated at low frequencies then it is itself stationary. In most physical
or financial applications where power law behavior is expected locally, the power
law parameters will vary so the process cannot be stationary in the large. The
aerothermal data provide an example. We would like to estimate the power law
parameters over segments that are short enough so that they can be taken as
constant but long enough so that their statistical estimates are stable. How are
we to decide what is a good segmentation of the data in this vague sense? This is
a very difficult problem that is rarely addressed in theoretical or applied studies
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FIGURE 5. Scale spectra of nonoverlapping segments of the data (215 points per segment)
obtained from the Haar wavelet decomposition. The top plot corresponds to the first half
of the data whereas the bottom plot corresponds to the second half. The scale spectra
are plotted in log-log format. A line with slope -5/3 as in Kolmogorov spectra is also
shown. The stars in the bottom plot corresponds to the different scales.

of spectral estimation. In Mallat et al. [23] a class of locally stationary processes
is introduced and an algorithm for finding intervals of approximate stationar-
ity is developed. This method is based on an exhaustive search for an optimal
segmentation, in a suitable sense, into intervals of stationarity. It does not work
so well when the intervals of stationarity are all of roughly the same size, and
when dealing with turbulence data. Thus, here we follow a somewhat different
approach where we can take advantage of prior information about intervals of
stationarity, as is the case of the aerothermal data.

To fix ideas we will consider estimation of parameters for a multifractional
Brownian motion (mBm), [8, 16, 29]. This is a generalization of fractional Brow-
nian motion where the parameters vary with location. In the time domain the
representation is

Bε(x) =
σε(x)

Γ(Hε(x) + 1/2)

∫ 0

−∞
[(x− s)Hε(x)−1/2 − (−s)Hε(x)−1/2]dW (s)

+

∫ x

0
(x− s)Hε(x)−1/2dW (s) (4.1)
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FIGURE 6. The figure shows the mean square of the d8 wavelet coefficients when the
data vector has been segmented into spatial segments of length 655m. Note that the
section in between 50km and 85km corresponds to a strong turbulence regime.

with W the standard Brownian motion and

Hε(x) = H(εx) (4.2)

σε(x) = σ(εx) (4.3)

where H(·) & σ(·) can be deterministic or random. For example, they can be sta-
tionary stochastic processes with smooth paths and decaying correlation func-
tions, independent of the Brownian path W (·). When H and σ are constants
then (4.1) is a time domain representation of the usual fractional Brownian mo-
tion. In the application to aerothermal data the Hurst exponent vary smoothly
around 1/3 corresponding to Kolmogorov turbulence. We assume here that the
process H ∈ C1 and takes values in (0, 1) as in [7]. Note that mBm also has been
generalized to more irregular functions H, see [3, 6].

The parameter ε−1 is a measure of the interval of stationarity in the sense
that, as in [16]

E[(Bε(x)−Bε(x−∆x))2] ≈ σ2ε(x)|∆x|2Hε(x)

for ε∆x small. This means that for scales that are small compared to the interval
of stationarity, the processes Bε(x) behaves locally like a fractional Brownian
motion with parameters frozen at x.

In Section 4.3 we will describe a method that removes dependence of the es-
timated parameters on a prior estimate of the interval of stationarity. The basic
idea is that we know roughly what 1/ε should be and how the estimation errors
behave if the underlying process is fractional Brownian motion, given the seg-
ment size. We then filter out these estimation errors and get estimates that do not
depend sensitively on the prior choice of the size of the interval of stationarity.

Another modification that is necessary in the nonstationary case is the identi-
fication of the inertial range over each interval of approximate stationarity. The
error in the power law fit to the scale spectra, over a segment of data, depends on
the scale range that is used. How do we select a range of scales for which the error
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FIGURE 7. The top plot shows the strong turbulence section of the atmospheric tem-
perature data. The bottom plot shows the atmospheric temperature data after it has
been high-pass filtered using db15 wavelets.

in the fit is acceptable? In the next section we introduce a criterion for selecting
the range based on comparison with an ideal fractional Brownian motion.

4.2 Estimation of the inertial range

The power law behavior that we want to identify in the data is necessarily re-
stricted to a finite set of scales, the inertial range, in each segment of stationarity.

Let 2M denote the length of the data vector over the segment under con-
sideration. For an ideal fractional Brownian motion with Hurst exponent H
let Si, i = 1, . . . ,M be its wavelet scale spectrum. Then, for each subrange
{i1, · · · , i2} the measure of misfit

r(i1, i2) =

i2∑
i=i1

[log2(Si)− log2(Ŝi)]
2, (4.4)

with Ŝi the power law estimated by weighted least squares, is a random vari-
able whose law can be computed analytically in principle or numerically. It de-
pends weakly on H so we fix it to equal some rough estimate H = H0. For the
aerothermal data of Section 3 we take H0 = 1/3, the Kolmogorov exponent. Let
R(i1, i2) be the 90th percentile of the distribution of r(i1, i2) with the value of
the Hurst parameter equal to H0. The scale range is now chosen as the largest
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range {i1, · · · , i2} for which r̃(i1, i2) < R(i1, i2). Here r̃(i1, i2) is the value of the
error (4.4) obtained from the actual data.

In order to obtain stable power law parameter estimates in the regression
we need a minimum number of scale range points. In the application to the
aerothermal data introduced in Section 3 we choose to model in terms of a power
law only over segments for which there are 5 or more points in the estimated
scale range.

4.3 Segmentation independent power law estimation

Given a fixed segmentation of the data into approximate intervals of stationarity
that is based on some prior information, we first calculate the inertial range as
described in the previous section and then do the power law fit. The power law
parameters are obtained by weighted linear regression of the log scale spectrum,
see Section 6.4. The estimated power law parameters depend on the segmentation.
We will now describe a method with which this dependence can be removed.

The idea is to do a filtering of the parameter estimates in order to remove the
variability that is segmentation dependent. From the theory of the power law
estimators for fractional Brownian motion we know that the slope estimator has
the form

p̂i = pi + wi (4.5)

where pi is the slope for the i’th segment and wi the fluctuation due to the
finiteness of the segment. We cannot take large segments, that reduce this er-
ror, because we are limited by the nonstationarity. The errors wi are essentially
uncorrelated over different segments and we have to construct a filter that will
predict pi from the estimates p̂i by removing the noise wi, to the extent possi-
ble. We assume that pi is itself a stationary stochastic process, independent of
the Brownian motion that generates the fractional Brownian motion. The pi are
the intrinsic variation of the power in the locally stationary fractional Brown-
ian motion. The correlation length of the pi must be longer than the segments
used in estimating them in order to have approximate stationarity relative to the
segmentation.

It can be shown using the results from Section 6 that wi is close to being a white
process. This is important because it allows us to estimate the autocovariance of
pi from the estimates p̂i, using the variogram, for example. Given estimates of
the autocovariance of pi and the variance of wi we can design a minimum mean
square error predictor or smoothing filter for pi.

The minimum variance unbiased filter for prediction of the parameter pro-
cesses is as follows. We describe it in the context of the slope parameter, but
the filtering of the log intercept is completely analogous. Let P̂ = (p̂i) be the
vector of estimates, P = (pi) the realization of the slope process and P̄ = (p̄) the
constant mean. Then the filter Γ is a matrix that transforms P̂ into ΓP̂ in such
a way that

E[||ΓP̂−P||2]
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is minimized over all matrices Γ that also preserve the mean P̄ of P, that is
ΓP̄ = P̄. Let Cp be the covariance matrix of P. Then it easily follows that

Γ = (Cp + Cw)−1[Cp + uT ⊗ P̄]

where the vector u = (ui) is given by

ui =
P̄i − P̄T (Cp + Cw)−1Cp,i

P̄T (Cp + Cw)−1P̄

and Cw is the diagonal covariance matrix of the estimation errors wi. Here Cp,i
is the i−th column of the matrix Cp and the superscript T stands for transpose.
The slope and log intercept processes are filtered separately. Filtering of this kind
is discussed in [9, 31] for example.

Since the effect of the sample noise wi in (4.5) is largely removed by the
filtering procedure, the estimates of the parameter processes will be essentially
independent of the prior choice of segmentation.

5 Application to aerothermal data

5.1 Estimation of inertial range

We estimate the set of scales where the process can be modeled as a ‘power law’.
Figure 5 shows that it varies with location. That is, the set of scales where the
scale spectrum is approximately linear is location dependent. There are two main
reasons for this. First, the scale range where the physical process has power law
spectrum varies and depends on the local intensity of the turbulence. Second,
the set of scales that are affected by measurement noise varies depending also on
the intensity of the turbulence.

We use the scheme described in Section 4.2 to estimate the inertial range.
First, we choose a segmentation that is short relative to the prior estimate of
the interval of stationarity. We choose segments of length 215 points. Then we
apply the algorithm of Section 4.2. For all scale ranges we measure the difference
between the scale spectrum computed from the data and the fitted power law
and choose the estimated scale range as the largest one for which this measure
is within the 90th percentile of the corresponding measure for a realization of
fractional Brownian motion.

The estimated ‘effective inertial ranges’ are shown in Figure 8, top plot, by the
vertical solid lines. For each segment there is one vertical line showing the scales
included in the corresponding effective inertial range. The segments consist of
215 points and the maximum

In Figure 8, bottom plot, we show the average of the spectra. The averaging
is carried out before the log transformation. Note the excellent match with the
Kolmogorov scaling law shown by the solid line!

5.2 Estimation of power law parameters

In the previous Section we estimated the inertial range for the scale spectrum,
relative to a fixed segmentation. We will now estimate the power law parameters
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FIGURE 8. The vertical lines in the top plot are the estimates of the location dependent
inertial ranges. That is, the scales over which the observed process is approximately a
power law. For each segment of length 215 points there is one vertical line showing the
scales included in the inertial range estimate. In the bottom plot we show the average
of the spectra. Note the excellent match with the Kolmogorov scaling law shown by the
solid line!

over this set of constrained scales. We use the method described in Section 4.3
for this purpose. Our main objective is to capture the intrinsic variation in the
parameters. If we choose a coarse segmentation the variability of the estimates
will be small. However, the estimated power law based on the scale spectrum may
in this case be an average of power law parameters that vary within the section.
Therefore we must choose a segmentation that is not much larger than the interval
of stationarity. The estimates should be independent of segmentation. That is, if
we shorten the segments this should not lead to an increase in the variability of
the estimated parameters.

To show that this is achieved by filtering we choose the following segmentations

160m (213 points), 327m (214), 655m, (215).

There are 256, 128, 64 nonoverlapping segments, respectively, in each case.
We use the linear least squares regression

logSij ≈ ci + pi log2(
2j

50
) (5.1)

for each segment i, with j the scale in suitable units. In Section 6 we analyze the
regression of (5.1). The results of the estimation are shown in Figure 9.
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FIGURE 9. The figure shows slopes of log-log scale spectra from wavelet decompositions
based on three different segment lengths. At the finest resolution the scale spectra are
calculated over nonoverlapping segments 160m long. This is the solid line that has the
largest variations. At the next resolution the nonoverlapping segments are 327m long
(plotted with a dashed line). The coarsest resolutions is 655m and is shown with dotted
line.

We see from the figure that the estimated slopes, p̂, vary considerably over
the data set. They also depend on the segmentation, with the finer ones having
larger fluctuations (solid lines). The difference between the parameter estimates
is mainly due to a white noise estimation residual. This leads us to the second
step of the estimation. In this step we carry out a filtering procedure in order
to remove the sampling variability that is segmentation dependent. We use the
filtering described in Section 4.3. From the first step we obtained the estimates
(in the case of the slopes)

p̂i = pi + wi .

The filter computes the minimum variance unbiased predictor of pi given p̂i.
To construct the minimum variance unbiased filter we need the some additional

estimates that we get from the process p̂i. We assume that the correlation of the
sampled slope process is approximately exponential. We show below that an
exponential function approximates the correlations of the sampled slope process
well. We need, therefore, its correlation length lp and its variance σ2p

E[(pi − p̄)(pj − p̄)] = σ2p exp(−L|i− j|/lp)
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with L the length of the segments. Note that this model is intrinsic to the process
and does not depend on the segmentation. As discussed above we shall model the
sample noise process {wi} as white and we only need its level σ2w. We estimate
the parameters σ2p, lp and σ2w using the empirical variogram.

For a time series X = (Xi) of size N the empirical variogram with lag j is
defined by

V (j) =
1

2(N − j)

N−j∑
k=1

(Xk+j −Xk)
2 (5.2)

with dependence on the length of the data vector N not shown. The mean of the
empirical variogram for the slope process P̂ is

E[V (j)] = σ2p(1− exp(−L|j|/lp)) + σ2w

and from this we obtain the parameter estimates by fitting to the empirical
variogram. In particular, σ2w is given by the vertical intercept since the process
{wi} is white.

We estimated also the log-intercepts for the three segmentations. The estimated
parameters are as follows for respectively the slope and the log-intercept:

• For the slope: Vertical intercept σ2w = 0.07, horizontal asymptote level
σ2w + σ2p = 0.2, and correlation length 800m (five segment lengths).

• For the log intercept: Vertical intercept σ̃2w = 0.5, horizontal asymptote
level σ̃2w + σ2c = 3.5, and correlation length 800m (five segment lengths).

The magnitue of the white noise part given above, σw, coincides with the one that
follows from the asymptotic theory presented in Section 6. Note the relatively
small value of σ̃w. These estimates are obtained using the finest segmentation,
160m, and only the data in the last half section, the high turbulence section. The
estimates were based on slope process obtained by regression as above, but for
the fixed set of scales 7 to 12. In this case the magnitude of the estimation error
does not depend on the segment. We show the correlation structure in Figure 10.
The solid line is the fitted model. There are two parts to it, the sampling noise
part (the intercept) and the exponential part corresponding to intrinsic variation
in the parameters.

Using the estimated model parameters we carry out the filtering to get a better
estimate for the slope and log intercept processes. In Figure 11 we show these
filtered slope processes. Note that after the filtering all three segmentations give
essentially the same result, as expected. Moreover, observe the strong intrinsic
variation in the slope parameter. Figure 12 shows the corresponding filtered in-
tercept processes.

We next simulate synthetic temperature profiles using the parameters esti-
mated above. Recall that we only aim to model the process on the scales cor-
responding to the turbulent inertial range. We therefore scale filter both the
aerotherman data of Figure 1 and the synthetic temperature profile so that only
the coefficients in the Haar wavelet basis corresponding to the inertial range con-
tribute. Figure 13 shows the scale filtered processes. The similarity between the
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FIGURE 10. Variograms for the fluctuations of the slope (top) and log intercept (bottom)
processes obtained from the temperature data. The stars are the variograms. The solid
lines are fitted exponentials. We use slope and log intercept estimates from the data with
the finest, 160m, resolution.

processes is striking. Next, we assess the accuracy of the parameter estimates
by applying the estimation procedure to simulated data. We find that the stan-
dard deviations for the local slope and log-intercept estimates are .15 and .3
respectively.

5.3 Summary and conclusions

We have generalized the estimation of fractional Brownian motion to a procedure
for estimation of a local power law process. For such processes the power law
itself (the exponent or slope) and the multiplicative constant (log intercept of
the scale spectrum) are not constants but vary slowly. We estimate the slope and
log intercept of the scale spectrum by appropriately segmenting the data and
then removing segmentation effects by a filtering procedure. The slope and log
intercepts themselves are modeled as stochastic processes. The estimation of the
power law includes the identification of a location dependent inertial range, that
is, the scale range where the process can be modeled as a power law.

We applied the estimation procedure to an important set of aerothermal data.
We found that the average of the estimated slope process is close to the value
predicted by the Kolmogorov scaling theory. To get a faithful representation of
the heterogeneity in the data it is however important to incorporate the local
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FIGURE 11. Filtered slope process of the actual data for the three finest segmentations.
Note that the filtered processes for all three segmentations are essentially the same. The
solid line corresponds to the finest resolutions. The dashed and dotted curves correspond
to the two coarsest segmentations. The filtering has eliminated the differences in the slope
processes that are due to the segmentation (as in Figure 9) by removing the white noise
component of the slope fluctuations that is due to sampling.

fluctuations around this value.
Realizations from the estimated power law model can be used to define syn-

thetic media for wave propagation codes. This is the application that motivated
our investigation. A complete study of the effects of the heterogeneity in local
power law model on wave propagation has yet to be carried out.

An important aspect of the model that we use is separation of scales in the
variation of the estimated parameters (slope and log intercept) from the scale at
which we sample the process.

Thus, we have shown how to generalize a procedure for estimation of pure
fractional Brownian motion to estimation of a local power law. In the next two
sections we analyze in detail estimation of pure fractional Brownian motion based
on the Haar scale spectrum and obtained excellent agreement between theory and
simulation.
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FIGURE 12. Filtered intercept process of the actual data for the three finest segmenta-
tions. The solid line corresponds to the finest resolutions, the dashed and dotted curves
correspond to the two coarsest segmentations.

6 On estimation of fractional Brownian motion

6.1 Statistics of wavelet coefficients for fBm

The scale spectrum is based on the wavelet coefficients. We now consider the
statistics of the Haar wavelet coefficients for fBm. Next we will analyze the scale
spectrum and power law parameter estimates based on these statistics. We as-
sume that the data given to us is the wavelet approximation coefficients at level
zero. That is, we assume that

a0(n) =

∫ n

n−1
BH(x)dx . (6.1)

The wavelet coefficients are therefore normally distributed random variables with

E[dj(n)] = 0

V ar[dj(n)] = σ2
(1− 2−2H)

(2H + 2)(2H + 1)
2j(2H+1)

Cor[dj1(n1)dj2(n2)] =
|D/
√
l|2H+2

8(22H − 1)
{δ2l/Dδ

2
1/D|x|

2H+2}|x=1 . (6.2)

Here

l = 2j2−j1 , j1 ≤ j2 (6.3)
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FIGURE 13. The actual temperature data set (top figure) obtained by synthesizing it
from the detail coefficients in the range 6 to 11 of its Haar decomposition, corresponding
to spatial scales of about 1 to 40 meters. Information from this range of scales enters into
the estimates of the slope and log intercept processes. The bottom figure is the same as
the top but for the simulated data. Note the striking similarity between the two figures.

is the relative scale,

D = |(2n2 − 1)l − (2n1 − 1)| (6.4)

is the relative location and

δ2df(x) = f(x+ d)− 2f(x) + f(x− d) (6.5)

is the second order symmetric difference. These results are derived using (2.1) and
self-similarity of fBm. Note that the expression for the correlation of the wavelet
coefficients takes on a universal form depending only on the relative displacement
in space and scale. The derivation of the precision of the power law estimators
in Section 6.3 is based on (6.2), which was only known in special cases before
[13, 36].

Consider the correlation of wavelet-coefficients, when

D

l
= |2j2(2n2 − 1)− 2j1(2n1 − 1)|2−j2 → ∞

then
δ2l/D

(l/D)2

δ21/D

(1/D)2
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is a forth order central difference operator and its expansion gives the asymptotic
result

Cor[dn1
j1
, dn2
j2

] =
(H + 1)(2H + 1)H(2H − 1)

2(22H − 1)

(√l
D

)2−2H

+O

(√
l

D

)4−2H
 .

If the scales j1 and j2 are given, then for n2 → ∞ and n1 fixed we have that√
l

D ≈
1

2n2

√
l
, whereas for n1 →∞ and n2 fixed we have

√
l

D ≈
√
l

2n1
. The correlation

within a single scale is in particular

Cor[dn1
j , d

n2
j ] (6.6)

=
(H + 1)(2H + 1)H(2H − 1)

2(22H − 1)

[(
1

2|n2 − n1|

)2−2H
+O

(
1

|n2 − n1|

)4−2H
]
.

For general wavelets the following asymptotic result is presented in [13, 36]

E[dn1
j1
dn2
j2

] ∼ O(|2j2n2 − 2j1n1|2(H−R))

for |2j2n2 − 2j1n1| → ∞

with R being the number of vanishing moments for the wavelet (R = 1 for Haar
wavelets).

6.2 Statistics of the scale spectrum

Using the above results for the wavelet coefficients we get a characterization of
the statistics of the scale spectral points. The mean is

E[Sj ] = E[dj(n)2] = σ2h(H)2j(2H+1) (6.7)

∝
∫ ∞
−∞

σ2|f |−(2H+1) sin4(π2j−1f)

(π2j−1f)2
2jdf

where

h(H) =
(1− 2−2H)

(2H + 2)(2H + 1)
. (6.8)

The normalized variance is

V ar[Sj ]

E[Sj ]2
= 2

∑
n,m(Cjnm)2

N2
j E[Sj ]2

=
1

Nj

 4

Nj

Nj−1∑
k=0

(Nj − k)ρ2H(k)− 2

 (6.9)

with Nj = 2M−j , the number of detail coefficients at level j and 2M the total
length of the data. Note that here and in the sequel we suppress the dependence
on M . The matrix Cj = (Cjnm) in (6.9) is the covariance matrix of the wavelet
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coefficients at scale j, determined by (6.2), and ρH(k) is the corresponding cor-
relation coefficient, which depends only on k = |n1 − n2| and H. Denote

g(H) = lim
Nj→∞

 4

Nj

Nj−1∑
k=0

(Nj − k)ρ2H(k)− 2

 (6.10)

then

V ar[Sj ]

E[Sj ]2
∼ g(H)

Nj
for Nj → ∞ . (6.11)

The function g(H) is computed numerically and is shown in Figure 14. It depends
only weakly on the value of H, especially when H ≤ 1/2 which is the case of
interest to us. The asymptotic behavior (6.11) holds only when the correlation
ρ2H(k) decays to zero in an integrable way. This means that the Hurst exponent
must be restricted to H < 3/4. In the Kolmogorov case H = 1/3, the correlation
ρH decays like k−4/3.

FIGURE 14. Plot of g(H) showing how the relative variance of the scale spectrum
depends on H.

Similarly, if H < 3/4, the normalized covariance can be expressed, for fixed
scale separation, as

Rj1j2 ≡ Cov[Sj1 , Sj2 ]

E[Sj1 ]E[Sj2 ]
= 2

∑
n,m(Cj1,j2nm )2

Nj1Nj2E[Sj1 ]E[Sj2 ]
(6.12)

with Cj1,j2 being the cross covariance between the wavelet coefficients at scale
j1 and j2, determined by (6.2). The scale spectral points Sj are not uncorrelated
for different j, as is sometimes assumed. For the power law parameter estimation
we note that for fixed j1 and j2

Rj1j2 ≡ Cov[Sj1 , Sj2 ]

E[Sj1 ]E[Sj2 ]
∼ 1√

Nj1Nj2

(6.13)

as Nj1 and Nj2 go to infinity. These results can be derived using (6.2).
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6.3 Fluctuation theory for the scale spectra

In the least squares fit of the power law we will need the statistical properties
of the logarithm of the scale spectra. We summarize the relevant facts in this
section, with the details given in Section 7.

In the large Nj limit, the distribution of the scale spectral points is normal

Sj = S̄j(1 +
vj√
Nj

)

vj ∼ N (0, g(H)) for Nj →∞

with S̄j ≡ E[Sj ] = σ2h(H)2j(2H+1) and where h and g are defined by (6.8)
and (6.10), respectively, and N (µ, s2) is the normal distribution with mean µ
and variance s2. The derivation of these results requires that H ≤ 1/2. The
covariance of the fluctuations is

Cov[
vj√
Nj

,
vi√
Ni

] = Rji (6.14)

with Rji given by (6.13).
The fluctuations in Sj are small and in Section 7 we show that this leads to

the asymptotic estimate

log2(Sj) = log2(S̄j) +
v̄j√

Nj ln(2)
(6.15)

v̄j ∼ N (0, g(H)) for Nj →∞ .

In addition to showing that vj is asymptotically normal, we also show in Section 7
that for any j1 < j2 fixed the random variables vj , j1 ≤ j ≤ j2, are asymptotically
jointly normal, as Nj →∞.

6.4 Estimators for the power law

Write (6.15) as

log2(Sj) = log2(σ
2h(H)) + j(2H + 1) +

v̄j√
Nj ln(2)

(6.16)

= c+ jp+
v̄j√

Nj ln(2)
j1 ≤ j ≤ j2

with the slope p and log intercept c to be estimated from data, and v̄j/
√
Nj a

fluctuation term that is characterized in the large Nj limit by the central limit
theorem, as discussed in the previous section. In view of the above we can use
generalized least squares to estimate b = [c, p]T as

b̂ = (XTR−1X)−1XTR−1Y (6.17)

with Y = [log2(Sj1), · · · , log2(Sj2)]T , and where j1, · · · , j2 are the scales in the
range under consideration, the inertial range. The dependence on j1, j2 and M
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has been suppressed. For a discussion of generalized least squares see [18]. The
design matrix X is defined as

X =


1 j1
1 j1 + 1
...

...
1 j2

 .

The matrix R is the normalized covariance matrix of the spectral points defined
in (6.12). This matrix depends on the value of H. However this dependence is
weak so we can use some rough estimate of H that is usually available, like
H = 1/3 for the aerothermal data of Section 5. In view of (6.16) we find that the
estimates of b have means

E[ĉ] = log2(σ
2h(H)) (6.18)

E[p̂] = 2H + 1

and covariance

Cb = (XTR−1X ln(2)2)−1 =
ln(2)−2

[
∑∑

R−1ij
∑∑

R−1ij i j − (
∑∑

R−1ij )2]

×
[ ∑∑

R−1ij −
∑∑

R−1ij i

−
∑∑

R−1ij i
∑∑

R−1ij i j

]
∼ 1

Nj1

for Nj →∞. (6.19)

From the above we arrive at the sought after parameter estimates

Ĥ = (p̂− 1)/2 (6.20)

̂log2(σ
2) = ĉ− log2(h(Ĥ)) . (6.21)

We next analyze the precision of these estimators. We find that the estimates

Ĥ and ̂log2(σ
2) are normally distributed with variances

V ar[Ĥ] = Cb(2, 2)/4 (6.22)

V ar[ ̂log2(σ
2)] ∼ Cb(1, 1)− 2Cb(1, 2) log2(h(H))′ + Cb(2, 2) [log2(h(H))′]2

for Nj1 large with Cb defined in (6.19) and h in (6.8). The variance of the esti-
mators is of order 1/Nj1 .

Long-memory processes can also be modeled via state space models. Maximum
likelihood estimators (MLE) for such models are analyzed in [10, 14].

6.5 Illustration of precision

The above result on the distribution of the estimators may be illustrated with
numerical simulation. We generate synthetic realizations of fractional Brownian
motion with known parameters. Then we use the above algorithm to estimate
these parameters and compare the precision of the estimates with the predicted
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precision. Actually, we do not simulate fractional Brownian motion but rather
the observed sequence (6.1), the approximation coefficients at level zero. The
synthetic realizations are generated by a simulation algorithm similar to the one
discussed in [27].

In Figure 15 we compare the asymptotic law of the estimators with simula-
tions. It is clear that the theoretical normal distribution predicts accurately the
distribution of the estimators.

FIGURE 15. Distribution of power law parameter estimates. The parameters were es-
timated based on realizations of length 210 with H = 1/3 and σ2 = 2. The power law
fitting is done over scales 1 · · · 5. The solid line is the empirical distribution associated
with 1000 realizations, the dashed line is the theoretical distribution and the vertical
lines are the specified parameters.

We show how the variance of the slope estimate p̂ depends on the number of
scales in the linear fit and the total number of data-points in Figure 16. The
dotted and solid lines correspond to using respectively scales 1, 2, 3 and scales
1, · · · , 5 and Hurst parameter H = 1/3. The crosses give the Cramer-Rao lower
bound [1, 40]: 1/(2M+2 ln2(2)) for the case that the wavelet coefficients are un-
correlated. The figure shows that only a few scales are needed for the variance of
the slope estimator to be close to the bound.

Note that our objective is estimation of H when H ≈ 1/3 and that our asymp-
totic result is valid only when H < 1/2. Several authors [26] have observed that
slope estimators degrade when H become large (H ≈ 1). This is because in
that case the wavelet coefficients exhibit long-range correlations. Estimation for
long-range processes corresponding to H > 1/2 is discussed in [4].

In the application of the estimation of the power law parameters to the aerother-
mal data in Section 5, which we model by a local fractional Brownian motion,
we have to account for spurious noise effects. This noise affects the small scales
mostly. We can make the power law parameter estimates more robust by letting
the weight matrix R in (6.17) depend on an additive noise parameter which must
be adjusted appropriately from rough prior data analysis. This is done in Section
5.2 without a detailed discussion.
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FIGURE 16. The variance of the slope estimate, computed by (6.22) with H = 1/3,
is plotted as a function of the number of data points 2M . The dotted line is for an
estimate with three scales, the solid line with five scales. The crosses correspond to the
Cramer-Rao lower bound. Note that even when the number of data points is not very
large the estimate of the slope does not depend sensitively on the number of scales used.

7 Central limit theorem for scale spectra

In this section we derive a central limit theorem for the scale spectral points, Sj ,
and also the log transformed spectral points log2(Sj), where

Sj =
1

Nj

Nj∑
n=1

(dj(n))2

with (dj(n))
Nj

n=1 the Haar difference coefficients of fractional Brownian motion at
scale j with H ≤ 1/2. The total number of data points is 2M and Nj = 2M−j .
We will consider the limit Nj → ∞. This means that M is large and that j is
not too close to M , that is, the central limit theorem will not be valid for the
large-scale spectral points Sj with j ≈ M . We will use the following version of
the Berry-Esseen theorem [12].

Let the yi be independent random variables such that

E[yi] = 0, E[y2i ] = σ2i , E[|y3i |] = ρi,

define

s2n =

n∑
i=1

σ2i , rn =

n∑
i=1

ρi

and let Fn be the distribution of the normalized sum
∑n

i=1 yi/sn.
Then for all x and n

|Fn(x)− N(x)| ≤ 6
rn
s3n

(7.1)

where N stands for the mean zero, unit variance normal distribution.
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7.1 Central limit theorem for Sj

To use this theorem we will first transform the sum of squares of wavelet coeffi-
cients to a sum of independent random variables. Denote the vector of wavelet
coefficients at scale j by dj = [dj(1), · · · , dj(Nj)]

T and the covariance matrix
associated with dj by Cj . Then dj has the same law as

(Cj)1/2[η1, · · · , ηNj ]
T

and in law

Sj =
S̄j
Nj

Nj∑
i=1

λjiη
2
i = S̄j

1 +
1√
Nj

[
1√
Nj

Nj∑
i=1

λji (η
2
i − 1)]

 (7.2)

where ηi are independent zero mean and unit variance normal random variables,
S̄j = E[Sj ] and λji are the eigenvalues of Cj/S̄j , the correlation matrix of dj .

Let

Yj =
1√
Nj

Nj∑
i=1

yji

with yji = λji (η
2
i − 1). Note that the yji are independent random variables such

that
E[yji ] = 0, E[(yji )

2] = 2(λji )
2, E[|(yji )

3|] ≤ 28(λji )
3 .

According to (7.1) we need only show that

Jj ≡
∑Nj

i=1(λ
j
i )

3

[
∑Nj

i=1(λ
j
i )

2]3/2
(7.3)

is small for Nj large.
Using (6.9) we find

Nj∑
i=1

(λji )
2 =

∑
n,m

(Cjnm/S̄j)
2 (7.4)

= N2
j V ar[Sj ]/(2S̄

2
j ) ∼ Nj g(H)/2 for Nj →∞.

Below we show that

λji ≤ K (7.5)

for some constant K ≥ 1 independent of Nj . Hence

Nj∑
i=1

(λji )
3 ≤ NjK

3 . (7.6)

From (7.4) and (7.6) we find

Jj ≈
(2K2/g(H))3/2√

Nj
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and goes to zero as Nj →∞. From the Berry-Esseen theorem we conclude that
the distribution of

Yj/
√
g(H) =

∑Nj

i=1 λ
j
i (η

2
i − 1)]√

g(H)Nj

tends to the standard normal distribution as Nj becomes large.
Thus

Sj ∼ S̄j(1 + εj

√
g(H)

Nj
) for Nj →∞

in law, with εj a standard normal random variable.
Let us now show (7.5). The diagonal entries of the correlation matrix are all

equal to one. By the Gersgorin disc theorem, |λji − 1| ≤
∑

n6=i |Cin|/C11. But the
sum remains finite as Nj → ∞ because we have assumed that H ≤ 1/2 and so

we can use (6.6). Rewriting the inequality with λji on the left side we get (7.5).

7.2 Central limit theorem for log2(Sj)

We consider next a central limit theorem for log2[Sj ]. As in (7.2) we write the
scale spectrum in terms of centered random variables Yj

Sj = S̄j(1 +
Yj√
Nj

) .

Taking logs and expanding in a Taylor expansion with remainder we get

log2(Sj) = log2(S̄j) +
Yj√
Nj ln 2

−
Y 2
j

2ξ(Yj)2Nj ln 2

with

ξ(Yj) ∈
{

(1, 1 + Yj/
√
Nj) when Yj ≥ 0,

(1 + Yj/
√
Nj , 1) when Yj < 0.

We showed above that the central limit theorem holds for Yj . We show below
that Y 2

j /(2ξ(Yj)
2) is O(1) as Nj →∞. We therefore, have a central limit theorem

for log2(Sj) as well.
By the Cauchy-Schwarz inequality

Jj ≡ E

[
|
Y 2
j

ξ(Yj)2
|

]
≤
√
E[ξ(Yj)−4]E[Y 4

j ] .

We show that Jj = O(1) as Nj →∞. Consider first E[Y 4
j ]. Using (7.5) we find

E[Y 4
j ] = E[(

∑Nj

i=1 λ
j
i (η

2
i − 1)]√

Nj

)4]

≤ K4(NjE[(η2i − 1)4] +Nj(Nj − 1)6E2[(η2i − 1)2])/N2
j = c1 + c2/Nj
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with ci constants. Next consider

Ij ≡ E[ξ(Yj)
−4] ≤ E[ξ(Yj)

−4I(Yj≤0)] + 1

≤ E[(1 + Yj/
√
Nj)

−4I(Yj≤0)] + 1

with IA the indicator function of the set A. In order to bound Ij we replace
1 + Yj/

√
Nj by Zj such that w.p.1 Zj ≤ (1 + Yj/

√
Nj).

Note that

1 + Yj/
√
Nj =

∑Nj

i=1 λ
j
iη

2
i

Nj

and that
∑Nj

i=1 λ
j
i = Nj , which is the trace of the correlation matrix for dj . Let

q be the number of eigenvalues that exceed 1/2. In view of (7.5) we find

q ≥ Ñj = Nj(2K − 1)−1 ≡ NjK̃ .

Thus, we can define Zj as

Zj =
1

2

∑Ñj

i=1 η̃
2
i

Nj
=

K̃

2

∑Ñj

i=1 η̃
2
i

Ñj

.

Hence

Ij ≤ E[Z−4j I(Yj≤0)] + 1 ≤ (2/K̃)4Ñ4
j E[Z̃−4] + 1

with

Z̃j =

Ñj∑
i=1

η2i

in law. The random variable Z̃j has law given by the Gamma density

γ(α,ν)(x) =
(α)ν

Γ(ν)
xν−1 exp(−αx)

with parameters α = 1/2 and ν = Ñj/2. It follows that for Ñj ≥ 10

E[Z̃−4] =
(α)νΓ(ν − 4)

(α)ν−4Γ(ν)
=

1

(Ñj − 2)(Ñj − 4)(Ñj − 6)(Ñj − 8)
.

Hence, Ij ≤ K ′′ and

Jj ≤
√
K ′′(c1/Nj + c2) ≤ K̄

for Nj ≥ 10/K̃.
From the above we conclude that

log2(Sj) ∼ log2(S̄j) + εj

√
g(H)

Nj ln(2)
for Nj →∞

in law, with εj a standard normal random variable.
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7.3 Joint density of spectral points

We show that the spectral points are asymptotically, as Nj →∞, jointly normal.
A generalization of the argument presented in Section 7.2 shows that this is the
case also for the log spectral points. From this follows that the central limit theo-
rem holds also for the power law parameter estimates. Consider the distribution
of Y = a1Sj1 + a2Sj2 with a1 6= 0 , a2 6= 0 and j1 < j2 fixed parameters. The
central limit theorem for this quantity can be shown essentially as in Section 7.1.
Let dj1 and dj2 be the vectors of wavelet coefficients at the two scales. Define

d =

[
dj1

dj2

]
and d̃ = Σd with Σ a diagonal matrix whose first Nj1 elements equal

√
a1 and

last Nj2 elements equal
√
a22j1−j2 . Then

Y = d̃T d̃/Nj1 .

By a transformation to independent variables and an application of the Berry-
Esseen theorem we find, as in (7.3), that we need to show

J ≡
∑Nj1

+Nj2
i=1 (λi)

3

[
∑Nj1

+Nj2
i=1 (λi)2]3/2

(7.7)

is small for Nj1 large. Here λi are the eigenvalues of Cov(d̃) = ΣCΣ with C the
covariance matrix of d. Note first that from (6.9) it follows

Nj1
+Nj2∑
i=1

λ2i ≥ (a1)
2
∑
n,m

(Cj1nm)2 ∼ (a1)
2Nj1(S̄j1)2g(H)/2 for Nj →∞ .

Hence, the result follows if we can bound λi uniformly with a bound indepen-
dent of Nj1 . We find, using (6.2) and the Gersgorin disc theorem, that for some
constant L and 1 ≤ j ≤ Nj1

|λj − a1S̄j1 | ≤ LS̄j1

since the rows of C are absolutely and uniformly summable with a bound that is
independent of Nj1 . Hence λi ≤ L̃S̄j1 for some constant L̃. A similar argument
holds for Nj1 < j ≤ Nj1 +Nj2 . Therefore, J defined in (7.7) is small for Nj large
and the central limit theorem for Y follows.
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